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Generator matrix elements for Gz 2 SU(3): II. Generic 
representations" 
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Department of Physics, McGill University, 3600 University St, Montdal, Quebec H3A-ZT8, 
Canada 

Received 7 November 1994 

Abstract. Generator matrix elements are given for G2 in an SU(3) basis 

1. Introduction 

In a recent paper by Farell et al (1994), hereafter referred to as I, generator matrix elements 
of Gz in an SU(3) basis are given for degenerate representation (one Dynkin label zero) of 
Gz. In this paper the analysis is extended to generic representations. 

In the degenerate case (a ,  0) and (0, b) the subgroup provides a complete set of internal 
labels, so the states are automatically orthogonal and can be normalized straightforwardly; in 
the generic case (a, b) there is one missing label and it is convenient to use non-orthogonal 
unnordized states. 

Section 2 deals with the basis states, and discusses their non-orthonormality. In section 3 
the generator matrix elements are derived. Section 4 contains some concluding remarks. The 
earlier paper I contains comments on physical applications of our results and references to 
previous work on the subject; speciil reference should be made to the early work of Sviridov 
etal (1975). 

2. Basis states 

We will use 'character states', for which the integrity basis is provided by the Gz character 
generator (see I). It is best to start with the Gz 3 SU(3) branching rule generating function 
(Gaskell et al 1978) 

G ( A , B ; P , Q ) = [ ( l - A P ) ( l  -AQ)( l -BP)( l -BQ)]- '  

x [(I - APQ)-~  + B (1 - B)-']  . 
We~are using Dynkin's labelling of the Gz fundamental representations: (1,O) is the 14-plet 
and (0,l) the septet. In I and in Gaskell et a[ (1978) that numbering is reversed. 

The power series expansion of (2.1) gives the Gz 2 SU(3) branching .rules: the 
coefficient of A' Bb P P  Qq is the multiplicity of the SU(3) representation ( p .  4 )  in the Gz 
representation (a ,  b). But equation ~(2.1) does more than count multiplicities. We interpret 
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AP - A3 AQ - U', APQ - a, BP - q,  B Q  - c*. B - 0 as the highest states of the 
SU(3) representations contained in the fundamental GZ representations (see figure 1 of I); 
the highest state of any SU(3) representation in any Gz representation is then given by the 
appropriate product of powers of them. 

We distinguish two types of state, called @-states and &states, according to whether 
the highest state of the SU(3)  representation to which they belong contains a or B (by 
equation (2.1) it cannot contain both). For a-states we adopt the exponent of (* as the 
missing label; for 0-states the missing label is the exponent of U'. We call the missing label 
i in both cases. Then a highest a-state is 
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and a highest &state is 

We remark that a state for which p + q = a + b may be called, and labelled as, an a-state 
or a @-state (a and 0 both absent); its i label as an a-state is q less its i label as a 6'-state. 
We suppress the Gz representation labels (a ,  b). The internal SU(3) labels are respectively 
r, m, y with the isospin labels doubled to avoid half-odd values. The ranges of the labels 
p ,  q, i are such that the exponents in (2.2) and (2.3) take all non-negative integer values. 

States other than the highest ones given by equations (2.2), (2.3) are obtained by applying 
the SU(3) lowering generators Ezl, E32. E31. In differential form, suitable for acting on the 
states (2.2), (2.3) each is given by the sum of the two expressions for it in equations (2.6) 
and (2.16) of I. 

The basis states of the Gz representation (a ,  b)  are polynomials of degree a in the (1,O) 
states and degree b in the (0,l) states. Thus only stretched representations (representation 
labels additive) in the direct product of a copies of (LO) and b copies of (0, 1) are to 
be retained. It is known (I) that the elementary unstretched, and therefore unwanted, 
representations are all of degree 2. 

The Gz character generator is needed in dealing with the unwanted states. Interpreted 
as describing the integrity basis for general basis states, it tells us that certain pairs 
of fundamental representation states are incompatible, i.e. never appear multiplied. The 
incompatible pairs of a particular weight are equal in number to the unwanted states of that 
weight. Equating each unwanted state to zero allows us to solve for each incompatible pair 
in terms of pairs that are compatible. When an incompatible pair appears we eliminate it 
by means of these incompatibility equations. 

We have used a version of the character generator in which all fundamental basis 
states appear in the denominator factors, as opposed to the version of Gaskell and Sharp 
(1981) in which only exterior states appear in denominators. Since the incompatibility 
rules characterize the character generator completely we content ourselves with presenting 
the rules in tabular form. Incompatibilities between (1,O) and (0.1) states are shown in 
table 1. Those between pairs of (1,O) states are shown in figure 2 of I (U. U', 6 are 
compatible with all (1,O) states). The only incompatible pair of (0.1) states is tr. We 
should mention that S is the m = 0 state of an SU(2)  triplet and K is an SU(2) scalar. 

We have determined all the unwanted states and, setting to zero, found the equations 
by which incompatible pairs are to be eliminated. We give only the replacements that are 
actually needed in section 3. 
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Table 1. Incompatibilily table. Each incompatible pair of (1,O) x (0. 1) states is marked with 
a cross. The (0. 1) states n, 7)' and the (1.0) states Y, Y* are compatible with all other states. 

(1,O) x (0, 1) states: 

(2.5) 

(0, states: 

< = - q* - < t* - 1 j z  e2 . (2.6) 

It should be noted that although ow states correspond one-to-one to all states of all 
Gz representations, they still contain admixtures of unwanted states belonging to lower 
representations. That does not matter for the purpose of computing generator matrix 
elements, to which we will turn shortly. 

Since our states are non-orthonormal, it is preferable to define the matrix element 
( i  I G I j ) of a generator G between two states I i ) and I j ) as the coefficient of I i ) 
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when G acts on I j ) ,  rather than as the overlap ( i  I G I j ). Matrices so defined can be 
multiplied in the usual way. The Wigner-Eckart theorem holds for them. Mawices for 
operators can be diagonalized and their eigenvalues and eigenstates found by the usual 
standard techniques. 

N Hambli and R T Sharp 

3. The generator matrix elements 

We now calculate the generator matrix elements with respect to or-states (highest state given 
by (2.2)) and 0-states (highest state given by (2.3)). The six significant generators are the 
components of two SU(3) tensors G(") and G(O1) which transform by the indicated SU(3) 
representations. 

According to the SU(3) Wlgner-Eckart theorem the matrix elements of G('") are given 
in terms of its reduced matrix elements (double bars) by 

tz m2 YZ tl ml Y I  

x [(PZ + U q z  + N P Z  + q z  +2)/2]-"2 . (3.1) 

The second factor on the right-hand side is an SU(3) Clebsh-Gordan coefficient. A similar 
formula exists for the matrix elements of G(O'), we will see below that the reduced matrix 
elements of G(O1) may be expressed in terms of those of G('O). 

We may write 

Cif ,i 
p q - 1  i' 

where the Ai, . i ,  B i ,  , i ,  Cj, , j  are matrix elements of Gg:;-2,3 to be determined. We have 
suppressed a subscript a or 0 on the states in (3.2) and, correspondingly, a superscript a or 
B on the coefficients Ai, , i ,  Bi, .i, C i ,  , i .  

We remark that an ambiguous state ( p  + q = a + b) is transformed by G(I0) into an 
or-state, an ambiguous state or a 0-state. An or-state always goes to an or-state except when 
p + q = a + b + 1 when it can also go to an ambiguous state; and a &state always goes 
to a &state except when p + q = a + b - 1 when it can also go to an ambiguous state. 

Apply El2 E u  to both side of (3.2). The result is 

(3.3) 

The states in the second and third sums on the right-hand side of (3.2) are annihilated and 
we can read off the allowed values of i' as well as the matrix element A p  J. We find, for 
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a-stam, i’ can only be i and 

Aa . = (-i - p + a  + b )  
I .I 

For @-states i‘ can be i or i - 1 and 

AB,, = (i - p  - q  +a+ b)  

(3.4) 

Next apply E23 to both sides of (3.21, after transferring the first sum to the left. The 
result is 

(3.7) 

We can read the values of i’ and the makix elements Bi, J .  For or-states i’ can be i or i + 1 ,  
and 

(i - q + a )  (2 - i + p + a  + b) 
BY,i = 

( 1  + P )  m 
(i - b) (1 - 2i - p +2u + 2b) 

( 1  +PI  m BY*, .i = 

For &states i’ can also be only i or i + 1, and 
(1 + i  + p )  (-i - p + a )  

( 1  + P) m 
E Bi,; = 

E (-i + a )  (2+ i + P - + a  + b) 
( l ~ + p ) a G  Bi.l.1 ,i = 

(3.10) 

(3.11) 

Finally transfer the first two sums to the left-hand side of (3.2). Only the third sum remains 
on the right and we can read the allowed values of i’ and the matrix elements Ci, ,i: 

For a-states i’ can be i ,  i - 1 or i + 1 and 

-lip - 2i 2 p + 3i3p - 8p2 - 4ip2 + i2p2 - zP3 - ip3 

2 -69 - 3iq - 4i2q + i’q - 13pq - 7ipq -~2i p q  - 8p2q 

-3ip q - p q - 59 - iq - i q - I p q  - 2ipq2 - 2p2q2 

-q3 - pq3 + 6b + 2ib - 8i2b <6pb - 6i2pb - ip2b 

2 3 2 2 2 2  2 
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+ a b  + 6iqb - 2i2qb +4pqb + 3ipqb + p2qb + Ziq2b + pq2b 

+2b2 + 4ib2 + 2pb2 + 3ipb2 - 2qb2 + iqb' - pqb2 - q2b2 

+6a - 3ia - 4i2a + 3pa - 3ipa - 3i2pa - 4p2a - p3a + 2iqa 

-i2qa - 2pqa + ipqa - 2p2qa - q2a + iq2a - pq2a + lba + 3iba 

+lpba + 2ipba - qba + iqba - q2ba + b2a + pb2a + 5a2 

-ia2 + 5pa2 - ipa2 + qa2 + pqa2 + 2ba2 + 2pba2 + a3 + pa3) (3.12) 

(i - b)(-i - p + a +  b)  
&Cl+ P )  (1 + 4 )  (2+ P + 4 )  

( 1  - 3i - p -Zip - p 2 - i q  CP _ =  '+I .I 

-pq + 36 + 2pb + qb + 3a +2pa + qa) (3.13) 

(3.14) i (-4+ i - p - 2q - a  - b) ( 1  + i  + a )  
821 + q )  (2+ P + q )  

CP-1 .i = 

For 8-states i' takes the values i or i - 1 and 

(3.15) 

(3.16) 

When one of the states in the matrix element is ambiguous its label (or) or (6') must be the 
same as for the other state. If both are ambiguous they should both be given the same label 

The matrix elements A:;:', @:,le), C/?,;" are all we need to obtain the corresponding 
reduced matrix elements. Also we can get the needed matrix elements of G(") by following 
the steps used above for G""). If we use lowest states (and near lowest) of the SU(3) IR 
(q ,  p )  instead of highest states (and near highest) of ( p ,  q), and use Hermitian conjugates 
of all the generators, then apart from some changes in phase, the steps are identical in every 
detail, with starred and unstarred variables interchanged. 

(or) or (0) .  

For or-states the results are 

3 (2 + P) (1 + q )  (3 + P + 4 )  
2 

= (-i - p +a  +b)  

= (i - q  + a ) ( 2 -  i + p + a  + b)  /-. 

(3.11) 

(3.18) 



Generator matrix elements for G2 3 SU(3): II 

( p  - 1 q +  1 i + 1 11 G"" 11 p q i )  

= ( q  + 1 p - 1 i + 1 ]I G"" 11 q p i )  
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= (i -b) ( 1  -2i  -p+2a  +2b) J(2 + "2;;p; + 4 )  (3.19) 

( P  - 1 i 11 G(") 11 P 4 i )  

= - ( q - l p i I I ~ ( ~ * ) I l q p i )  

(-4i - 4i2 + 4i3 - 6p  

-lip - 2i2p + 3i3p - sp2 - 4ip2 + i2p2  - zP3 - ip3 

-6q - 3iq - 4i2q + i3q - 13pq - 7ipq - 2i2pq - 8p2q 

-3ip2q - p3q - 5q2 - iq2 - izq2 - Ipq2  - 2ipq2 - 2p2q2 

-q3 - pq3 + 6b + 2ib - 8izb + 6pb - 6i'pb - ip2b 

+ab + 6iqb - 2i2qb + 4pqb + 3ipqb + p2qb + 2iq2b + pq2b 

+2b2 + 4ib2 + 2pb2 + 3ipb2 - ab2 + iqb2 - pqb2 - q2b2 

+& - 3ia - 4i2a + 3pa - 3ipa - 3i2pa - 4p2a - p3a + ~ i q a  

-i2qa - 2pqa + ipqa - 2p2qa - q2a + iq2a - pq2a + lba  + 3iba 

f l p b a  + 2ipba - qba f iqba - q'ba + b2a + pb2a f 5a2 

-ia2 + Spa2 - ipa2 + qa2 + pqa2 + 2ba2 + 2pba2 + a3 + pa3) 

1 - - 
P )  (1 + 4 )  (2+ P + q )  

, (3.20) 

( p q  - 1 i +  1 11 G('" 11 p q  i )  

= - ( q - l p i + l l [ G ( o ' ) l l q p i )  

(i - b) (-i - p + a  +b)  - - 2 ( 1  - 3i - p -Z ip  - p - iq + P )  (1 + 4 )  (2+ P + q )  
-pq + 3b + 2pb + qb + 3a + 2pa +qa) (3.21) 

( p q  - 1 i - 1 11 G('')II p q i )  

= - ( q  - 1 p i  - 1 11 G"') 11 q p i )  

= i (-4+i - p -2q  - a  - b ) ( l  +i + a )  J 6 ( 1  +qi  :zf, p + q )  . (3.22) 

For @-states we find for the reduced matrix elements 

( P + 1 q i 11 G('" 11 P 4 i )  

= - ( q p f l i  IIG('"Ilqpi) 

= (i - p - q  + a  + b )  & ( 2 + ~ ) ( 1  + q )  ( 3 + p + q )  (3.23) 
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( p  + 1 q i - 1 11 G('O) 11 p q i )  
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( p - l q f l i  ~ ~ G ( l o ~ ~ ~  p q i )  

= ( q C l p - l i  ( ( G ( O ' ) ( ( q p i )  

(3.24) 

(3.25) 

(3.26) 

1 + P  = (i - 4 )  (1 - i + 4 +a)  (4+ i + p  + q  + a  f b )  

( p q  - 1 i - 1 ~ ~ G ( ' o ) ~ ~  p q  i )  

= - ( q - l p i - 1  IIG(ol)Ilqpi)  

(3.27) 

(3.28) 

4. Concluding remarks 

We have used non-orthonormal generic states; that is convenient when there is a missing 
label. Our results can be compared with those of I by setting one of the G2 representation 
a orb labels equal tc zero, omitting the 'missing' label i, and replacing the normalization 
constants Np,4 of I by unity. 
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